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Eight different ion exchange equilibrium models are tested to determine which gives the most accurate
predictions of equilibrium behavior for multicomponent ion exchange. The eight models differ only in the
way in which they account for solution phase phenomena. Nonidealities in the exchanger phase are
accounted for by applying the Wilson model. The solution phase models considered include a model that
assumes ideal solution behavior and others that apply the extended Debye-Hückel equation, the Meissner
and Kusik electrolyte solution theory, and the Pitzer electrolyte solution theory. Each of these methods
for accounting for solution phase nonidealities are applied twice, once assuming incomplete ion dissociation
and once assuming that ion dissociation was complete. The models are tested using an extensive set of
equilibrium data for the 10 binary, 10 ternary, 5 quaternary, and 1 quinternary systems involving exchange
of the five H+, Na+, K+, Mg2+, and Ca2+ cations on a commercial resin. The results show that for nearly
all of the systems studied the greatest single improvement in the accuracy of the model predictions is
achieved when incomplete dissociation of the ions is considered even if neither the extended Debye-
Hückel equation nor the models of Meissner and Kusik or Pitzer are applied to the solution phase. The
application of Pitzer’s theory yields significantly superior results to those of Meissner and Kusik and the
other models.

Introduction

A range of semi-theoretical models have been proposed
to predict multicomponent ion exchange equilibrium be-
havior. Many of these models rely on analysis of the
experimental data from the constitutive binary systems to
predict the behavior in multicomponent systems.

It has long been recognized that the exchange of two ionic
species between a solution phase and an exchanger phase
may be represented by the reversible stoichiometric equa-
tion of the type:

where za and zb are the valencies of the ionic species A and
B, respectively, and the underscore denotes that the ion is
in the exchanger rather than the solution phase.

Many equilibrium models are based on the assumption
that the distribution of the exchanging ions between the
two phases may be represented through the definition of
the binary equilibrium constant:

where ai and a′i are the activities of ionic species i in the
solution and exchanger phases, respectively. By defining
the equilibrium constant in terms of activities, the models
are able to account for the nonideal behavior usually
exhibited in both phases.

Early workers often assumed that both phases behaved
ideally.1,2 Though computationally simple, the predictions
made by these models were inevitably inaccurate.

The model proposed by Elprince and Babcock3 was one of
the first to account for nonideal behavior in both phases.
They applied the Wilson4 model to estimate the exchanger
phase activity coefficients. The Wilson equation applied to
the exchanger phase to calculate the activity coefficients is

Here γji is the exchanger phase activity coefficient of
component i, ymi is the mole fraction of component i in the
exchanger phase, M is the number of counterion species
in the exchanger phase, and Λij is the Wilson binary
interaction parameter defined such that Λij ) 1 when i )
j and Λij > 0 when i * j. Since for an ideal exchanger phase,
Λij ) 1 ) Λji for all i and j, deviation of the parameters
from unity is an indication of the nonideality of the
exchanger phase. For a binary system, only two parameters
(ΛAB and ΛBA) are required to calculate the activity coef-
ficient. Once determined for a binary system of two
counterions, these values may be used to calculate the
exchanger phase activity coefficients in a multicomponent
system, assuming that the values are independent of the
presence of any other exchanging ion species.

This model was improved upon by Smith and Wood-
burn,5 who applied the extended Debye-Hückel equation
to calculate the activity coefficients in the aqueous solution
phase. They also applied the Wilson model to estimate the
exchanger phase activity coefficients. Using data for the
three constitutive binary systems, they were able to suc-
cessfully predict the equilibrium behavior of the SO4

2--
NO3

--Cl- ternary system.
Later Shallcross et al.6 proposed the use of the Pitzer

electrolyte solution theory7 to predict the aqueous phase
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activity coefficients. In all other respects the model was
identical to the Smith and Woodburn model.5 The analyti-
cal techniques used to fit this model to the binary equilib-
rium data were improved upon by Mehablia et al.8,9

As an alternative to the Pitzer model, Martinez et al.10

proposed the use of the Meissner and Kusik11 electrolyte
solution theory to calculate the solution phase activity
coefficients. While their model was developed for binary
ion exchange systems only, de Lucas et al.12 successfully
developed and tested a model for a four-component system
that used the Meissner and Kusik model.11

Most of the preceding models use the Wilson model to
predict the activity coefficients in the exchanger phase.
Vamos and Haas13 conducted a study to compare the
effectiveness of the Wilson and Margules equations to
estimate the exchanger activity coefficients. They concluded
that the performance of the Wilson model was slightly
superior to that of the Margules equation.

Shallcross et al.6 also recognized that not all the ions in
the solution would be available for exchange with the
exchanger phase because they would not be present as free
ions but rather as ion pairs. They employed the method
described by Kester and Pytkowicz14 to determine the
concentrations of the free ions in the solution phase
available for ion exchange.

In this study we compare the performance of different
models to account for the nonideal behavior of the solution
phase. The solution phase models considered include the
ideal behavior model, the application of the extended
Debye-Hückel equation, the Meissner and Kusik electro-
lyte solution theory, and the Pitzer electrolyte solution
theory. All four solution phase models are tested either
assuming or not assuming incomplete ion dissociation. We
assume that the nonidealities in the exchanger phase may
be accounted for by the Wilson model.

To thoroughly test the different models, they are applied
to extensive ion exchange equilibrium data for all binary,
ternary, and quaternary systems as well as the five-
component system involving the ions H+, Na+, K+, Mg2+,
and Ca2+ on the gel-type Amberjet 1200H resin manufac-
tured by Rohm and Hass.15 Data are available for all
systems at four different solution concentrations: 0.10
mol‚L-1, 0.20 mol‚L-1, 0.50 mol‚L-1, and 1.00 mol‚L-1.16

Solution Phase Behavior

Ideal Behavior. The simplest model of all, the activity
coefficients for all ions, are assumed to be equal to one.

Extended Debye-Hu1 ckel Equation. Debye and Hück-
el17 presented their limiting law:

where γ is the solution activity coefficient, A is the Debye-
Hückel coefficient, I is the ionic strength, and zi is the
charge of ion i.

The Debye-Hückel limiting law had the serious limita-
tion that it could only be applied with confidence to very
low ionic strength solutions. An improved Debye-Hückel
equation was proposed in which the term R represents the
ionic atmosphere concept:18

Here R is the interaction coefficient between cation (c) and
anion (a). This extension equation performs satisfactory up
to 0.1 M.

The extended Debye-Hückel equation includes a term
that accounts for the reduction of the dielectric constant
with increasing concentration:

where A ) 0.5115 and â ) 3.281 × 107. Values for Ri and
δi are species-dependent and are tabulated values pre-
sented by Robinson and Stokes.19 Values for Ri and δi are
also available for a range of ionic species.20,21 According to
Robinson and Stokes,19 the extended Debye-Hückel equa-
tion (eq 6) fits the activity coefficients in electrolyte
solutions to within the accuracy of the experimental data
up to concentrations of at least 1 N. Table 1 presents the
values for the parameters required in eq 6 for the present
study.

Meissner and Kusik Electrolyte Solution Theory.
Meissner and Kusik11 defined the reduced activity coef-
ficient as

where Γ is the reduced activity coefficient, γca is the mean
ionic activity coefficient, and zc and za are the absolute
number of charges on the cation and anion, respectively.
They presented an equation for the prediction of activity
coefficients in aqueous electrolyte solutions, based on
parameter q, the Kusik-Meissner parameter:

with

Here Γ0 is the reduced activity coefficient of pure solution
at 25 °C, and qM is the Kusik-Meissner parameter at 25
°C. Note that the equation for Γ* is of a similar form to the
Debye-Hückel equation. A is 0.5107 for the monovalent
ions and 0.4895 for divalent ions.

Meissner and Kusik11 developed their method to calcu-
late the activity coefficients of electrolytes in multicompo-
nent solutions. For the electrolyte of cation i and anion j,
the reduced activity coefficient is

ln γ ) -A|zcza|I1/2 (4)

ln γ ) -
A|zcza|I1/2

1 + âRI1/2
(5)

Table 1. Extended Debye-Hu1 ckel Equation Parameters
for Use in Equation 6

compound R‚1010 δ reference

Na+ 3.97 0.075 Truesdell and Jones21

H+ 4.47 0.08 Robinson and Stokes19

K+ 3.63 0.19 Robinson and Stokes19

Ca2+ 4.73 0.12 Robinson and Stokes19

Mg2+ 5.02 0.14 Robinson and Stokes19

Cl- 3.5 0.15 Truesdell and Jones21

ln γi ) -
Azi

2I1/2

1 + âRiI
1/2

+ δiI (6)
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1/(zc-za) (7)

Γ0 ) [1 + B(1 + 0.1I)q - B]Γ* (8)

B ) 0.75-0.065qM

ln Γ* ) - AxI

1 + CxI

C ) 1 + 0.055qM exp(-0.023I3)
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} (9)
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Here the odd numbers indicate cations and the even
numbers indicate anions, zi is the valency of ion i, Ii is the
ionic strength of the ion i, I is the total ionic strength of
the solution, Γij

0 is the reduced activity coefficient of
electrolyte ij in a pure solution, and Wij is the weighting
factor.

The weighting factor is defined as

Meissner22 proposed a method for calculating q at 25 °C
used in eq 9:

The Meissner and Kusik model is considered very accurate
and has been used in recent studies.23 However, because
of the lack of availability of the q parameter for a wide
range of electrolytes, its application is relatively limited.
Table 2 presents the values for the parameters for eq 9 for
the present study.

Pitzer’s Electrolyte Solution Theory. The application
of Pitzer’s electrolyte solution theory first proposed in 1973
and subsequently updated in 1991 has been described
many times. What follows is a brief description of the
application of the theory to the calculation of solution
activity coefficients. More detailed discussions are pre-
sented elsewhere.7,15,24-27

The estimation model developed by Pitzer for single ions
in aqueous solutions incorporates terms that relate to both
binary and ternary interaction between the ions, as well
as incorporating a Debye-Hückel electrostatic term. The
expression for the activity coefficient of the single cation
(M) in an aqueous solution of cations (c) and anions (a) is
given by Pitzer24 as

where

The above equations are valid for 1-1, 1-2, and 2-1
electrolytes. In these equations zi is the charge of ionic
species i, and I is the ionic strength. Aæ is temperature-
dependent, being defined as

where No is Avogardo’s number, Fw and ε are the density
and the static dielectric constant of the pure solvent, k is
Boltzmann’s constant, T is the absolute temperature, and
e is the electron charge. At 25 °C, Aæ equals 0.392 for water.
A value of 2.0 for R is recommended by Pitzer.7

The â and θ terms in the above equations represent
measurable combinations of the second virial coefficients
and may be derived from single electrolyte data. The C and
ψ terms are measurable combinations of the virial coef-
ficients and may be derived from data of two-salt systems.
Values for âMX

(0) , âMX
(1) , and CMX

(0) are species-dependent and
are tabulated in the literature.24

The values used for the Pitzer parameters are presented
in Tables 3 and 4. Values for θMN and ψMNX for systems
other than those listed in Table 3 are assumed to be zero.

Incomplete Ion Dissociation. When a salt MxXm is
introduced into an aqueous solution, not all the molecules
will immediately dissociate into the separate ions. An
equilibrium will be established corresponding to the equa-
tion:

having a stability constant defined as

where [M]f is the free ion concentration of species M, and
m and x are the valences of cation M and anion X,
respectively.

Some of the ions present in the solution will not be
available for ion exchange because they are not present as
free ions but rather as ion pairs. Thus for the binary system
of Ca2+ and Na+ ions with Cl- ions as the nonexchanging
anions, some of the ions will be present as CaCl+ and NaCl
ion pairs. We assume that all CaCl2 dissociates to at least
CaCl+ and Cl-.

To calculate the free ion concentrations of each of the
species the method of Kester and Pytkowicz14 is used. As
an example consider the system involving the exchange of
Na+ and Ca2+ in the presence of Cl-. Since sodium is
present as either Na+ or NaCl then

where [Na]t is the total concentration of sodium present
in whatever form. According to the definition of the stability
constant we may write

Table 2. Meissner and Kusik11 Model Parameters for Use
in Equation 9

compound A B‚10-8 qM

Na 0.5107 0.3258 3.12
H 0.5107 0.3258 5.96
K 0.5107 0.3258 11.21
Ca 0.4895 0.1511 18.22
Mg 0.4895 0.1015 15.19
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Substitution into eq 21 yields upon rearrangement

Similar equations may be written for the free ion concen-
trations of the other ionic species, namely

Since the total concentrations of the ionic species present
are known and values for the stability constants are
tabulated for many ion pairs, the three above equations
may be solved to determine the concentrations of free ions
available for ion exchange for the Na+-Ca2+ binary system
with Cl-.

Kester and Pytkowicz14 proposed that the stability
constant (KS

MX) may be related to the solution ionic strength
(I) through an equation of the form:

where A′ and B′ are constants, whose values are tabulated
for a range of salts. Table 5 presents the parameters
required in eq 26 to calculate the stability constants
(KS

MX).

Exchanger Phase Behavior
The Wilson4 model is used to estimate the exchanger

phase activity coefficients. For a single binary system, eq
3 reduces to

since, as has already been noted, Λ11 ) 1 ) Λ22. A similar
expression may be written for the activity coefficient for
the ion γj2.

Thus, following Wilson’s model, values for the two binary
interaction parameters, namely, Λ12 and Λ21, must be
known before the resin phase activity coefficients can be
calculated. Once these values are determined, they may
be used together with their counterparts from the other
binary systems (e.g., Λ13 and Λ31; Λ23 and Λ32) to predict
the activity coefficients in a multicomponent system.

Smith and Woodburn5 proposed that values for the
Wilson binary interaction parameters may be calculated
along with the equilibrium constant using equilibrium data
from a single binary system. They achieved this by first
defining an equilibrium quotient (λ) for each ion exchange
reaction as

This equilibrium quotient is related to the equilibrium
constant by

Thus, the equilibrium quotient would be equal to the
equilibrium constant if the resin phase were ideal. Smith
and Woodburn choose to use the equilibrium quotient as
it is a quantity that can be determined from experimental
binary equilibrium data if the solution phase activity
coefficients are known.

Substitution of eq 3 into eq 29 yields upon rearrange-
ment the equation:

where ωk is the stoichiometric coefficient of species k in
the exchanger phase.

Mehablia et al.8 proposed the use of the Gaines and
Thomas28 approach to first calculate the equilibrium
constant. Then a two-parameter regression is performed
to determine the Wilson binary interaction parameters.
This has the advantage of decoupling the effect of varia-
tions of the equilibrium constant from variations in the
Wilson binary interaction parameters:

Since the equilibrium quotient is readily determined from
simple binary batch equilibrium tests, a value for the
equilibrium constant may be estimated by integrating the
area under a plot of ln(λAB) against resin equivalent ionic
fraction. The method of Mehablia et al.8 will be used to
evaluate the equilibrium constants and Wilson binary
interaction parameters for each of the constitutive binary
systems.

Experimental Procedures
For the present study, ion exchange equilibrium data

were collected using a simple batch technique for selected
binary, ternary, and quaternary systems involving H+,

Table 3. Single Salt Pitzer Parameters24

MX âMX
(0) âMX

(1) CMX
(0)

HCl 0.20332 -0.01668 -0.00372
NaCl 0.07722 0.25183 0.00106
KCl 0.04661 0.22341 -0.00044
CaCl2 0.32579 1.38412 -0.00174
MgCl2 0.35573 1.61738 -0.00174

Table 4. Binary Salt Pitzer Parameters24

MX-NX θMN ψMNX

NaCl-HCl 0.0368 -0.0033
KCl-HCl 0.0067 -0.0081
CaCl2-HCl 0.0682 0.0043
MgCl2-HCl 0.0891 0.0006

Table 5. Salt Dissociation Constants for Use in Equation
2614

MX A′MX B′MX

HCl -1.179 -0.982
NaCl -0.537 -1.002
KCl -0.491 -0.464
CaCl+ 1.073 -0.442
MgCl+ 0.651 -0.011

[Na+]f )
[Na]t

1 + [Cl-]f KS
NaCl

(23)

[Ca2+]f )
[Ca]t

1 + [Cl-]f KS
CaCl+ (24)

[Cl-]f )
[Cl]t

1 + [Ca2+]f KS
CaCl+

+ [Na+]f KS
NaCl

(25)

ln(KS
MX) ) A′ + B′I (26)

ln γj1 )

1 - ln(ym1 + ym2Λ12) - [ ym1
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]
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)za( yA
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)zb
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1
ln(λAB) dyA (31)
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Na+, K+, Ca2+, and Mg2+ ions with Cl- as the nonexchang-
ing anion. The ion exchanger used in the experiments was
the commercially available gel-type Amberjet 1200H manu-
factured by Rohm and Haas. The spherical resin beads had
a mean diameter of (650 ( 50) µm. All solutions used in
the studied were prepared from analytical grade chemicals
and high-quality distilled and deionized water.

Experimental equilibrium data were obtained for the 10
binary, 10 ternary, 5 quaternary, and 1 quinternary
systems involving H+, Na+, K+, Mg2+, and Ca2+ ions. In
all systems, Cl- was the only nonexchanging anion present.
The full experimental data are presented elsewhere by Vo
and Shallcross.16

To remove any water-soluble residues or undesired
cations remaining on the resin after the manufacturing
process, the resin samples were subjected to a precondi-
tioning process that left them in the desired form. To
determine the cation exchange capacity of the resin, a
sample of the dry resin in the H+ form was placed in a
flask. A known amount of deionized water was then added
to the flask. Analytical grade NaCl was then introduced.
The salt immediately went into solution forming a concen-
trated solution of Na+ ions, which displaced all the H+ ions
from the resin, converting the resin completely to the Na+

form. The concentration of the H+ ions in the solution was
then determined by titrating with a standard NaOH
solution under stirring action directly into the flask still
containing the resin. When repeated five times the cation
exchange capacity was found to be (5.05 ( 0.03) mmol/g of
dry resin in the H+ form.

A sample of the resin in a known form was put in contact
with a 100 mL solution of a known composition and con-
centration in an Erlenmeyer flask. The resin and solution
phases were then allowed to equilibrate over 3 days under
intermittent shaking at 21 °C. Preliminary tests confirmed
that a period of 3 days was sufficient to ensure that
equilibrium had been attained. The amount of resin used
and the composition of the solution phase were varied to
achieve a wide range of equilibrated compositions. All
binary and multicomponent systems were studied at four
different solution phase concentrations, namely, 0.10
mol‚L-1, 0.20 mol‚L-1, 0.50 mol‚L-1, and 1.00 mol‚L-1.

The concentration of ions in the solution at equilibrium
was measured using appropriate techniques such as titra-
tion, inductively coupled plasma, and atomic adsorption
spectrophotometry. Once the equilibrium composition of the
solution phase was measured, the equilibrium composition
of the exchanger phase was calculated by a simple material
balance. Samples of the resin used for the equilibrium
experiments were also analyzed to determine their mois-
ture content. The experimental program is described more
fully elsewhere.15

Model Comparisons
In this work we compare the performance of eight

different models to account for the nonideal behavior of the
solution phase. The solution phase models considered
include the ideal behavior model, the application of the
extended Debye-Hückel equation, the Meissner and Kusik
electrolyte solution theory, and the Pitzer electrolyte solu-
tion theory. All four solution phase models are tested either
assuming or not assuming incomplete ion dissociation. For
the cases when we assume that ion dissociation is complete,
we refer to the ideal model as model ID, the application of
the extended Debye-Hückel equation as model DH, the
Meissner and Kusik electrolyte solution theory as model
MK, and the Pitzer electrolyte solution theory as model
PI. The corresponding models that incorporate the assump-

tion that ion dissociation is incomplete will be referred to
as the ID/IA, DH/IA, MK/IA, and the PI/IA models,
respectively.

Model ID/IA assumes that the activity coefficients in the
solution phase are equal one, but that not all the ions are
available for ion exchange with the exchanger phase. Model
DH is very similar to the model of Smith and Woodburn
except for the way in which the equilibrium constants and
Wilson binary interaction parameters are calculated from
the constitutive binary system data. Model PI/IA is es-
sentially the model proposed by Mehablia et al.8

To quantify the accuracies of the predictions of the ion
exchange equilibrium model, this work uses the relative
residue. It is defined as

Here M is the number of set of equilibrium data, N is the
number of cationic species, and ø is the quantity of interest,
either the equivalent ionic fraction in the solution phase
or that in the exchanger phase. For the same systems, the
model that yields the lowest value for the relative residue
(R) will be the one that agrees most closely with the
observed experimental equilibrium data.

Analysis of Binary System Data. The eight ion ex-
change equilibrium models were fitted to the experimental
data for each of the 10 binary systems allowing values for
the equilibrium constant (KAB) and the two Wilson binary
interaction parameters (ΛAB and ΛBA) to be calculated. The
values for these three fitted parameters are presented in
Table 6 for each binary system and each equilibrium model.

The values for the relative residue presented in Table 7
for the eight models allow the accuracy of the model
predictions to be compared. We see that for all 10 binary
systems the predictions of the PI/IA model, which applies
the Pitzer electrolyte solution theory and considers incom-
plete dissociation, yields the most accurate predictions.

The results also show that, at least for the 10 binary
systems considered, the four methods of considering for
nonideal behavior of the solution phase generally may be
arranged in order of increasing accuracy in the model
predictions as

Furthermore, for most of the binary predictions the great-
est single improvement to the accuracy of the model
predictions is achieved when incomplete dissociation of the
ions is considered even if neither the extended Debye-
Hückel equation nor the models of Meissner and Kusik or
Pitzer are applied to the solution phase. Once incomplete
ion dissociation is considered, then the application of
Pitzer’s theory yields significantly superior results to those
of Meissner and Kusik.

Analysis of Multicomulticomponent System Data.
The eight equilibrium models were also used to predict the
behavior of the 10 ternary, 5 quaternary, and 1 quinternary
system using the values for the three fitted parameters
calculated previously using the constitutive binary system
data and presented in Table 6.

The relative residue values for these systems are also
presented in Table 7 for each of the eight models. As before
the predictions of the PI/IA are the most accurate. We also

R )

∑
i)1

N [∑j)1

M (ømodel - øexperiment

øexperiment
)

j

2]
i

NM - 1
(32)

ideal < Debye-Hückel < Meissner and Kusik <
Pitzer
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see that the value of the relative residue increases with
increasing number of exchanging ions in the system.

The model predictions for five of the models are com-
pared graphically with the actual experimentally deter-

Table 6. Model Parameters Fitted to the Ten Binary Systems for Each of the Eight Different Models

without ion association with ion association

solution phase model system AB KAB ΛAB ΛBA KAB ΛAB ΛBA

ideal ID and ID/IA NaH 1.76 1.75 2.14 1.70 1.91 1.03
KH 4.40 0.96 3.06 4.38 1.61 1.10
MgH 85.7 2.01 2.20 8.30 2.04 1.67
CaH 107.9 1.59 0.36 112.8 2.24 0.97
KNa 1.36 1.41 2.14 1.21 1.22 2.12
MgK 10.04 2.12 4.42 10.7 2.16 2.40
CaK 8.01 2.85 1.32 13.3 2.45 1.06
MgNa 29.2 2.57 4.02 25.9 1.24 4.34
CaMg 2.29 3.19 4.35 2.37 4.10 2.66
CaNa 37.2 2.90 4.07 40.0 2.97 3.41

Debye-Hückel DH and DH/IA NaH 1.80 2.08 1.85 1.92 2.05 1.87
KH 4.01 1.93 1.33 3.95 1.23 1.40
MgH 82.4 1.75 0.92 85.1 1.93 0.75
CaH 102.9 2.02 0.81 103.0 1.94 0.81
KNa 1.57 1.94 1.13 1.36 1.58 0.99
MgK 9.77 1.45 2.52 10.55 1.41 1.39
CaK 15.1 3.05 1.00 13.4 2.02 1.22
MgNa 34.9 2.90 2.02 33.2 2.52 2.45
CaMg 2.37 2.73 0.75 2.79 2.09 1.02

Meissner and Kusik MK and MK/IA NaH 1.88 2.13 0.42 2.11 2.31 0.80
KH 4.36 1.27 1.96 4.24 1.05 2.05
MgH 87.2 2.17 0.20 86.0 2.34 0.31
CaH 104.3 1.64 1.13 104.0 1.82 0.97
KNa 1.42 1.47 0.94 1.49 1.34 0.83
MgK 94.6 2.63 0.95 7.47 2.16 0.69
CaK 16.5 1.49 1.27 14.8 1.46 1.33
MgNa 24.6 3.49 1.78 28.6 4.53 2.08
CaMg 1.99 2.89 3.11 1.94 2.34 3.62
CaNa 35.2 4.34 1.24 39.8 5.16 0.80

Pitzer PI and PI/IA NaH 2.30 2.04 0.93 2.01 1.91 1.64
KH 3.91 1.25 1.60 3.84 1.04 1.66
MgH 84.3 1.44 0.88 82.0 1.80 0.74
CaH 112.3 1.23 1.05 98.0 1.42 1.07
KNa 1.32 1.11 0.80 1.22 1.18 0.65
MgK 7.62 2.71 0.33 7.01 2.23 0.67
CaK 14.8 1.83 0.95 12.4 1.14 1.07
MgNa 23.5 3.72 1.25 20.8 4.21 2.30
CaMg 1.86 5.25 2.29 1.92 4.27 3.63

Table 7. Values for the Relative Residue for Each System for Each of the Eight Different Modelsa

system ID DH MK PI ID/IA DH/IA MK/IA PI/IA

NaH 0.000245 0.000227 0.000195 0.000186 0.000184 0.000141 0.000108 0.000079
NaK 0.000245 0.000215 0.000203 0.000205 0.000205 0.000167 0.000165 0.000061
NaCa 0.000283 0.000254 0.000243 0.000221 0.000195 0.000171 0.000122 0.000075
NaMg 0.000296 0.000230 0.000212 0.000225 0.000195 0.000156 0.000086 0.000050
KH 0.000280 0.000263 0.000216 0.000219 0.000186 0.000175 0.000120 0.000057
KMg 0.000248 0.000219 0.000183 0.000160 0.000164 0.000136 0.000084 0.000076
KCa 0.000290 0.000271 0.000216 0.000184 0.000203 0.000142 0.000098 0.000088
MgH 0.000246 0.000200 0.000164 0.000150 0.000129 0.000105 0.000100 0.000065
MgCa 0.000275 0.000226 0.000219 0.000230 0.000225 0.000175 0.000171 0.000167
CaH 0.000232 0.000162 0.000150 0.000149 0.000141 0.000072 0.000060 0.000059
KNaH 0.00356 0.00328 0.00315 0.00318 0.00302 0.00275 0.00269 0.00250
NaHCa 0.00407 0.00374 0.00359 0.00352 0.00341 0.00307 0.00295 0.00271
NaHMg 0.00443 0.00408 0.00352 0.00344 0.00320 0.00283 0.00242 0.00215
KNaCa 0.00484 0.00453 0.00414 0.00361 0.00322 0.00280 0.00231 0.00226
KNaMg 0.00460 0.00436 0.00420 0.00410 0.00386 0.00349 0.00270 0.00239
KHCa 0.00447 0.00465 0.00410 0.00398 0.00383 0.00360 0.00340 0.00318
KHMg 0.00428 0.00423 0.00416 0.00425 0.00375 0.00316 0.00370 0.00308
NaMgCa 0.00472 0.00435 0.00417 0.00385 0.00385 0.00368 0.00337 0.00315
HMgCa 0.00373 0.00335 0.00325 0.00319 0.00303 0.00276 0.00273 0.00268
KMgCa 0.00531 0.00447 0.00419 0.00423 0.00422 0.00401 0.00377 0.00338
CaMgNaK 0.00620 0.00509 0.00477 0.00451 0.00481 0.00442 0.00364 0.00382
KNaHMg 0.00523 0.00452 0.00420 0.00401 0.00387 0.00363 0.00353 0.00324
KNaCaMg 0.00486 0.00462 0.00439 0.00442 0.00395 0.00360 0.00378 0.00306
KHCaMg 0.00476 0.00427 0.00412 0.00399 0.00380 0.00358 0.00348 0.00287
NaHCaMg 0.00564 0.00513 0.00477 0.00463 0.00435 0.00396 0.00384 0.00298
KNaHCaMg 0.01236 0.01088 0.01012 0.01012 0.00971 0.00903 0.00858 0.00841

a ID, ideal solution phase; DH, extended Debye-Hückel equation applied to solution phase; MK, Meissner and Kusik electrolyte solution
theory applied to solution phase; PI, Pitzer electrolyte solution theory applied to solution phase; /IA, with incomplete ion dissociation
incorporated into model.
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mined equilibrium exchanger phase compositions for the
K+-Na+-H+ system in Figure 1. This is an example of a
ternary error diagram as originally proposed by Shallcross
and Vo.29 Each point on this diagram represents the error
in the exchange phase equilibrium composition predicted
by a model as compared with the actual experimentally
determined composition. The better the agreement between
the model predictions and the experimental data, the closer
the data point will be to the diagram’s origin. The data in
this diagram represents 76 sets of equilibrium compositions
for four different solution concentrations ranging from 0.10
mol‚L-1 to 1.00 mol‚L-1. Clearly from Figure 1 the predic-
tions made using model PI/IA are the most accurate.
Moreover the four methods considered for modeling the

nonideal behavior of the solution phase generally may be
arranged in order of increasing accuracy in the model
predictions as

This observation is confirmed in Figures 2 and 3, which
are the comparable diagrams for the K+-H+-Mg2+ and
the K+-Mg2+-Ca2+ ternary systems. These are represen-
tative of the 1-1-2 and 1-2-2 valence systems studied.

As the triangular error diagram is only applicable to
ternary systems the data for four- and five-component
systems must be presented in a different form. Figure 4
presents the error in the exchanger phase model predic-
tions for K+-Na+-Mg2+-Ca2+ four-component system.
Each predicted exchanger phase composition is represented
by four points on the diagram, one for each of the four

Figure 1. Ternary error diagram for the prediction of the
exchanger-phase composition for the K+-Na+-H+ system using
five different ion exchange equilibrium models.

Figure 2. Ternary error diagram for the prediction of the
exchanger-phase composition for the K+-H+-Mg2+ system using
five different ion exchange equilibrium models.

Figure 3. Ternary error diagram for the prediction of the
exchanger-phase composition for the K+-Mg2+-Ca2+ system using
five different ion exchange equilibrium models.

Figure 4. Errors in the predictions for the equilibrium exchanger-
phase compositions for the four models for the K+-Na+-Mg2+-
Ca2+ quaternary system.

ideal < Debye-Hückel < Meissner and Kusik <
Pitzer
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exchanging ions. The data in this diagram represents 60
sets of equilibrium compositions for four different solution
concentrations ranging from 0.10 mol‚L-1 to 1.00 mol‚L-1.
We note that the ID model predictions are the poorest of
the four models studied with PI/IA model giving the best
set of predictions. This is confirmed by the relative residue
data presented in Table 7. This system is representative
of the five four-component systems studied. Figure 5
presents the comparable diagram for the H+-Na+-K+-
Mg2+-Ca2+ system. In this diagram, the data represent
77 sets of equilibrium compositions for four different
solution concentrations ranging from 0.10 mol‚L-1 to 1.00
mol‚L-1.

Concluding Remarks

Eight ion exchange equilibrium models differing in the
way in which they account for solution phase phenomena
were applied to extensive equilibrium data involving
exchange of up to five cations. This work clearly shows that,
at least for the five cation species studied, the four methods
of considering for nonideal behavior of the solution phase
generally may be arranged in order of increasing accuracy
in the model predictions as:

Furthermore for most of the systems considered, the
greatest single improvement to the accuracy of the model
predictions is achieved when incomplete dissociation of the
ions is considered even if neither the extended Debye-
Hückel equation nor the models of Meissner and Kusik or
Pitzer are applied to the solution phase. Once incomplete
ion dissociation is considered, then the application of
Pitzer’s theory yields significantly superior results to those
of Meissner and Kusik.
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Figure 5. Errors in the predictions for the equilibrium exchanger-
phase compositions for the four models for the K+-Na+-H+-
Mg2+-Ca2+ quinternary system.

ideal < Debye-Hückel < Meissner and Kusik <
Pitzer
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